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Why do we use models?

• Abstraction of the reality
• Represent natural mechanisms that 

are not recognized, controlled, or 
understood

• Tools for policy makers and 
researchers
– Express scientific knowledge
– New discoveries
– Challenge current knowledge

“All models are wrong g
(false), but some are useful”

Box (1979)

So…why do we use models?

• Understand and acceptance:
– To strengthen the modeling process
– To be more resilient to pitfalls during 

development and evaluationdevelopment and evaluation
• Improvement of the current model
• Understand the complex behavior 

of phenomena via the identification 
of small patterns in the process

“In systems thinking, the 
understanding that models are 
wrong and humility about the 

limitations of our knowledge is 
ti l i tiessential in creating an 

environment [model] in which we 
can learn about the complexity of 

systems in which we are 
embedded”

Sterman (2002)

Processes for Model 
Development usingDevelopment using 
Systems Thinking



7/9/2008

2

Empirical or Relational Models

Data

S
Inflow Outflow

Model

…

Evaluating…

Modeler

Analyzing…

M
od

el
in

g…

Conceptual or Theoretical Models

Concept

S
Inflow Outflow

Model

el
in

g…

Evaluating…

Modeler

Thinking…

M
od

e

Data

Fitting…

Model Evaluation
“Model testing is often designed to 

demonstrate the rightness of a 
d l d th t t t i llmodel and the tests are typically 

presented as evidences to promote 
its acceptance and usability”

Sterman (2002)

Can a model be ‘validated’?

• Models cannot be validated
– It is impossible to prove that all 

components of models or real 
systems are true or correct

• Models can never mimic the reality 
since they are representation of it
– Some models can be programmed to 

predict quantities that cannot be 
measured in real systems

Models can be evaluated !

• Models can be evaluated or tested, 
but never validated
– Validation means “having a conclusion 

correctly derived from premises”
– Verification means “establishment of 

the truth, accuracy, or reality of ”
• Calibration means model fine tuning 

or fitting; it is the estimation of 
values or parameters or 
unmeasured variables
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“Validity of a mathematical model 
has to be judged by its 

sustainability for a particular y p
purpose; that means, it is a valid 

and sound model if it accomplishes 
what is expected of it”

Forrester (1961)

Model Testing (1)

• Model examination
• Algorithm examination
• Data evaluation

S• Sensitivity analysis
• Validation studies
• Code comparison studies

Shaeffer (1980)

Model Testing (2)

• Verification
– Design, programming, and checking 

processes of the program
• Sensitivity AnalysisSensitivity Analysis

– Behavior of each component of the 
model

• Evaluation
– Comparison of model outcomes with 

real data

Hamilton (1991)

Evaluation Errors

Two-way decision process

Model Predictions

Decision Correct Wrong

Reject Type I Error (α) Correct (1 - β)

Accept Correct (1 - α) Type II Error (β)

How does it happen?

• Type I Error (α): Rejecting an 
appropriate model
– Biased or incorrect observations are 

chosen to evaluate a model
• Type II Error (β): Accepting a wrong 

model
– Biased or incorrect observations are 

used to develop and evaluate a model
– Conceptual model cannot be tested 

because lack of data
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Accuracy x Precision

Definition

• Accuracy
– It measures how closely model-

predicted values are to the true values
– Ability to predict the right values

• Precision
– It measures how closely individual 

model-predicted values are within 
each other

– Ability to predict similar values 
consistently

Definition

• Inaccuracy or bias
– Systematic deviation from the truth

• Imprecision or uncertainty• Imprecision or uncertainty
– Magnitude of the scatter about the 

average mean

Accuracy x Precision
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Case 3 - ↓ Precision ↑ Accuracy
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Which one is better?

• Accuracy and Precision are independent
– ↑ Accuracy does not imply ↑ Precision and 

vice-versa
• Imprecise model can get the right value 

i l b f d t i t (using large number of data points (e.g. 
case 3)

• True mean is irrelevant for model 
comparison if the model is consistent 
(e.g. case 2)

Techniques for Model Evaluation: 
Regression Analysis

Y-axis x X-axis

• We regress the observed data (Y-axis) 
on the model-predicted (X-axis)

• When using least-squares technique the 
vertical difference is minimized to 
estimate the parametersestimate the parameters

• Observed data has the random error, not 
the model-predicted values assuming 
deterministic model

• Even stochastic models can be re-run 
several times, decreasing the error

Why linear regression?

• Hypothesis is that when regression Y 
(Obs) on f(X1,…,Xp)i (Model-Pred), a 
perfect prediction would have intercept = 
0 and slope = 1

• Little interest since the predicted value 
(by the linear regression) is useless in 
evaluating the mathematical model

• r2 is irrelevant since one does not intend 
to make predictions using the fitted line!
– May use it to adjust for model imprecision!
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Assumptions for LR

• The X-axis values are known 
without errors (deterministic)

• The Y-axis values have to be 
independent random andindependent, random, and 
homoscedastic

• Residuals are independent and 
identically distributed ~ N(0,σ2)

Caution about r2

• A high coefficient of correlation (r) does 
not indicate that useful predictions can 
be made by a given mathematical model 
since it measures precision not accuracy

• A high r does not imply the estimated 
line is a good fit (curvilinear)

• An r near zero does not indicate that 
observed and model-predicted are not 
correlated since they may have a 
curvilinear shape

Mean square error (MSE)

• Also known as residual mean square or 
standard error of the estimate

• This statistic may be used to compare 
model ‘validity’ when comparing models
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Model-predictedModel-predicted

• Y2 = a + b×X ± N(0,4)α=0.2

• a = 1.12 ± 2.53
• b = 0.80 ± 0.41
• P (a=0) = 0.67
• P (b=1) = 0.63
• P (a=0 & b=1) = 0.90
• r2 = 0.32
• MSE = 13.7

• Y1 = a + b×X ± N(0,1)α=0.2

• a = 0.28 ± 0.63
• b = 0.95 ± 0.10
• P (a=0) = 0.67
• P (b=1) = 0.63
• P (a=0 & b=1) = 0.90
• r2 = 0.92
• MSE = 0.89

Concerns about LR

• Assumptions of normality and 
homoscedasticity are rarely satisfied

• Ambiguous results depending on the 
scatter of the data

• Regression lacks sensitivity to 
distinguish between random clouds and 
data points

• Stochastic models require different 
technique to derive the parameters

Is r2 a good indicator of 
adequacy?
• r2 measures how far (close) the 

observations (Y values) deviate from the 
best-fit regression

• The best-fit regression IS NOT the 
model-predicted values

• r2 does not distinguish between: 
– observed and model-predicted values 

strongly agree
– a strong linear relationship exists but the 

measurements do not agree
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Fitting Errors:
Analysis of Deviation

Analysis of Deviation

• Empirical but powerful analysis
• Deviation is the difference between 

model-predicted minus observed
valuesvalues

• Usually, an acceptable range is 
used to accept or not the model 
performance

Deviation Plot Analysis

Mitchell and Sheehy (1997)

Fitting Errors:
Extreme and Influential Points

Extreme Points:
L. Leverage

. Studentized residue

. PRESS
Influential Points:

. DFFITS

. Cook’s distance

Concordance Correlation 
Coefficient

Failure of Agreement Measures

Mean bias and t-test fail to detect poor 
agreement in pairs of data

Lin (1989)

Pearson correlation coefficient measures a 
linear relationship but fails to detect any 
departure from the concord line.
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What is CCC?

• CCC aka reproducibility index
• Are the model-predicted values precise 

and accurate at the same time across a 
range and are tightly amalgamated along 
the unity line through the origin?

• CCC accounts for precision and 
accuracy at the same time

• Proposed initially by Krippendorff (1970) 
and modified by Lin (1989)

How CCC is computed?
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Limitations of CCC

• Assumes that each pair of data 
point are interchangeable, that 
means, the order of the data point 
does not matter; there is nodoes not matter; there is no 
covariance

• Nickerson (1997) suggested an 
adaptation to the CCC

An improved CCC estimate

• CCC uses squared perpendicular 
distance (Y1 – Y2)2 of any paired 
data point to the unity line

• Unfortunately it measures only how• Unfortunately, it measures only how 
close the data point is to the unity 
line and not which direction it goes

An improved CCC estimate

Liao (2003)
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An improved CCC estimate

• It is a quadratic area function of ρ
whereas in Lin’s it is quadratic 
distance function of ρ

• Accuracy (Aρ) includes ρ whereas ρ
in Lin’s (Cb) it does not
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• Intercept = 0
• Slope = 0.6
• r2 = 0.6
• Cb = 1 and Aρ = 1
• ρc = 0.6 and γρ = 0.6
• r2 = 0.65

Comparison Lin’s x Liao’s

• Lin’s CCC
– Cb = 0.571
– rc = 0.527

• Liao’s CCC
– Ar (Cb) = 0.205
– Gr (rc) = 0.189

• Chinchilli’s CCC
– GCCCw = 0.179

Liao (2003)

Diverse Evaluation 
Measurements

Mean Bias

• Likely to be the oldest and most 
used statistic to assess model 
accuracy
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• All models (A, B, and C) have the same MB = 2
• t-test for Model A (exponential)

– Assuming σ1 = σ2: P = 0.29
– Assuming σ1 ≠ σ2: P = 0.28
– Assuming covariance: P = 0.09

• t-test for Model B 
– Assuming σ1 = σ2: P = 0.14g 1 2

– Assuming σ1 ≠ σ2: P = 0.13
– Assuming covariance: P = 0.02

• t-test for Model C (linear)
– Assuming σ1 = σ2: P = 0.25
– Assuming σ1 ≠ σ2: P = 0.24
– Assuming covariance: P = 0.05

Mean bias

• Has to be adjusted for covariance!
• Rejection rates of the H0 hypothesis 

increases as correlated errors 
increaseincrease

• Cannot be used as the main 
statistics for model evaluation

Resistant r2

• Resistant means it is insensible to 
outliers or extreme points

• Uses the median instead of mean
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Modeling Efficiency

• Proportion of variation explained by the 
line Y = f(X1,…,Xp)

• Varies from [-∞ to 1]; MEF = 1 is better
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Coefficient of Determination

• Ratio of total variance of observed data 
to the squared of the difference between 
model-predicted and mean of observed

• It is the proportion of the total variance of 
the observed values explained by the 
predicted data

• CD = 1 is better
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MSEP x MSE

• MSE assesses the precision of the 
fitted linear regression using the 
difference between observed and 
regression-predicted valuesregression predicted values

• MSEP consists the difference 
between observed and model-
predicted values

MSEP x MSE
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Limitations of MSEP

• Removes the negative sign
• Weights the deviation by their 

squares, thus giving more 
influence to larger data pointsinfluence to larger data points

• Does not provide information about 
model precision

Decomposition of MSEP

• Work of Theil (1961)
• Expanded MSEP equation and 

solved for known linear measures 
of linear regressionof linear regression
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Understanding MSEP

Inequality 
Proportions Equations Descriptions 

( ) ( )1

2 2 2 2 2
3 1 ( ,..., )( ,..., ) (1 ) 1-

pp f X X YMSEP f X X Y s b r s= − + × − + ×

Mean Bias Systematic Bias Random
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pf X Xs b MSEP× −  Systematic or slope bias 

UD ( )2 21 Yr s MSEP− ×  Random errors 
a Note that UM + US + UC = UM + UR + UD = 1 

Understanding MSEP

• Mean bias indicate the error in 
central tendency

• Systematic bias indicate how much 
the regression deviates from Y = X 
line, that means, errors due to 
regression

• Random errors indicate the 
unexplained variation that cannot 
be accounted for by the relationship
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Case 2 - ↑ Precision ↓ Accuracy
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2

3

ed

• MSEP = 2
• Mean bias = 0
• Slope bias = 0
• Random = 100%

y = x
r2 = 0.25

-1

0

1

-1 0 1 2 3

Predicted

O
bs

er
ve • Unequal variance = 33.3%

• Incomplete (co)variation = 
66.7%
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• Mean bias = 6.7%
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• Random = 83.3%
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• Unequal variances = 11.1%
• Incomplete (co)variation = 

82.2%

Nonparametric Analysis

Why nonparametric?

• One might be interested in the 
comparison of the ranking of real-
observed values versus those 
predicted by modelspredicted by models
– Bull’s EPD for efficiency

• More resilient to abnormalities of 
the data
– Outliers and influential points
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Nonparametric tests

• Spearman correlation is the linear correlation 
coefficient of the ranks

( )( )

( ) ( )
1

22

n

i i
i

S n n

R R S S
r =

− −
=

∑

∑ ∑

• Kendall’s coefficient measures the ordinal 
concordance of ½×n×(n-1) data points where a 
data point cannot be paired with itself 
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Balance analysis

• Evaluates the balance of number of 
data points under- and 
overpredicted by the model above 
and below the observed and model-

di t dpredicted mean

Model prediction Observed or Model-Predicted Mean 
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Overpredicted n11 n12 
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Overprediction

What do we check in the BA?

• Is the trend of under- or over-
prediction similar?

• Is it similar below and above the 
mean?mean?

• Use Chi2 analysis to check if the 
number of points is not different
– Check if they are 25%
– Check if the distribution is similar

Balanced Analysis
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X2 = 0.4 (P = 0.53)
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25%
25% Is it similar?

X2 = 0.2 (P = 0.65)

Odds ratio = 0.69 (P = 0.67)

Concluding - 1

• Acceptance of model wrongness is 
important to ensure more reliable 
and accurate models are developed

• Assessment of model adequacy• Assessment of model adequacy 
requires a combination of several 
statistical analyses

• Usefulness of a model depends on 
the purpose it was developed for
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Concluding - 2

• High accuracy and high precision of 
a model for a given database 
implies NOTHING regarding future 
predictions of the model

• Model evaluation has to be 
assessed using several statistical 
techniques; each technique 
measures different characteristics 
of the model


